

Smart Fixture De-embedding (SFD) Tool

Accurate, Easy-to-Use Tool for PCB and Interconnect Characterization

Overview

The Smart Fixture De-embedding (SFD) Tool is simple and accurate, and can be used to extract large-bandwidth network parameters for modeling of interconnects, such as circuit board traces and vias, connectors, IC packages, and cables. Recently, the 2x thru de-embedding technique has gained wide acceptance, because it has comparable accuracy to traditional TRL techniques, but is much simpler to implement; only one 2x thru structure is needed. The SFD tool allows engineers to perform fast, accurate Sparameter measurements by removing the fixture effects.

Megtron 6 test Board

 $|S_{\text{DD21}}|$ of DUT with Fixture, 2X Thru Fixture, and de-embedded DUT with EMStar SFD tool.

Features:

- Versatile:
 - Multiport fixture de-embedding for singleended and differential devices with support of asymmetrical fixture configuration
 - S-parameter and Time-Domain-parameter conversion
 - Powerful plotting tool
- Accurate: Comparable to Keysight ADS
- Easy-to-Use: User-friendly interface
- Fast: Fast runtime with simple installation

SFD Tool

A user-friendly wizard guides you through all the necessary steps. You can review, plot, and save the results at each step.

Fixture	DUT	Fixture	→	DUT		
• tool requires the follow • Measured/simulate • Measured/simulate	wing input data: ed total structu ed S-parameter	re with fixture s for each fixt	is. tures / or "Fixture +	flipped(Fixture)" symm	netric structure.	
Choose structure b	VDP					
choose structure t						
OUT has two ports	; fixtures have	two ports				
 DUT has two ports DUT has four ports 	; fixtures have s; fixtures have	two ports two ports				
 DUT has two ports DUT has four ports DUT has four ports 	; fixtures have s; fixtures have s; fixtures have	two ports two ports four ports				
 DUT has two ports DUT has four ports DUT has four ports DUT has four ports DUT has eight port 	; fixtures have s; fixtures have s; fixtures have ts; fixtures have	two ports two ports four ports e two ports	Fixture	DUT	Fixture	
 DUT has two ports DUT has four ports DUT has four ports DUT has four ports DUT has eight port DUT has eight port 	;; fixtures have s; fixtures have s; fixtures have ts; fixtures have ts; fixtures have	two ports two ports four ports two ports four ports	Fixture	DUT	Fixture	

Step 1: Choose the 4-port structure type for the differential traces.

Step 3: Load the S4P file of the 2x Thru Fixture.

Step 4: Verify the left and right fixtures extracted from the 2x thru fixture. For other applications, custom fixture files can be imported here, which can have some asymmetry.

Step 5: Define your de-embedding configuration. You can use the default fixture setting or choose the custom fixtures here.

Step 6: Review and save your results in either S-parameters or Time-Domain parameters.

SFD and ADS Comparison

The accuracy of the Smart Fixture De-embedding (SFD) tool has been demonstrated through measurements, and is compared with the well-known Keysight ADS software below, which shows comparable accuracy between SFD and ADS.

ADS block diagram for de-embedding the DUT.

About EMStar SFD Tool

The Smart Fixture De-embedding (SFD) Tool is developed by an experienced research team, led by Professors J. Drewniak and J. Fan, at the Missouri EMC Laboratory. This versatile, easy-to-use SFD tool has been used by many companies, such as Intel.